Loss of TR4 orphan nuclear receptor reduces phosphoenolpyruvate carboxykinase-mediated gluconeogenesis.
نویسندگان
چکیده
OBJECTIVE Regulation of phosphoenolpyruvate carboxykinase (PEPCK), the key gene in gluconeogenesis, is critical for glucose homeostasis in response to quick nutritional depletion and/or hormonal alteration. RESEARCH DESIGN/METHODS AND RESULTS Here, we identified the testicular orphan nuclear receptor 4 (TR4) as a key PEPCK regulator modulating PEPCK gene via a transcriptional mechanism. TR4 transactivates the 490-bp PEPCK promoter-containing luciferase reporter gene activity by direct binding to the TR4 responsive element (TR4RE) located at -451 to -439 in the promoter region. Binding to TR4RE was confirmed by electrophoretic mobility shift and chromatin immunoprecipitation assays. Eliminating TR4 via knockout and RNA interference (RNAi) in hepatocytes significantly reduced the PEPCK gene expression and glucose production in response to glucose depletion. In contrast, ectopic expression of TR4 increased PEPCK gene expression and hepatic glucose production in human and mouse hepatoma cells. Mice lacking TR4 also display reduction of PEPCK expression with impaired gluconeogenesis. CONCLUSIONS Together, both in vitro and in vivo data demonstrate the identification of a new pathway, TR4 --> PEPCK --> gluconeogenesis --> blood glucose, which may allow us to modulate metabolic programs via the control of a new key player, TR4, a member of the nuclear receptor superfamily.
منابع مشابه
The orphan receptors COUP-TF and HNF-4 serve as accessory factors required for induction of phosphoenolpyruvate carboxykinase gene transcription by glucocorticoids.
Glucocorticoids stimulate hepatic phosphoenolpyruvate carboxykinase (PEPCK; EC 4.1.1.32) gene expression, thereby increasing the rate of gluconeogenesis. The effect of glucocorticoids on PEPCK gene expression is mediated by a set of promoter elements collectively referred to as the glucocorticoid response unit. The response unit spans a 100-bp segment and includes two glucocorticoid receptor bi...
متن کاملOrphan nuclear receptor small heterodimer partner negatively regulates growth hormone-mediated induction of hepatic gluconeogenesis through inhibition of signal transducer and activator of transcription 5 (STAT5) transactivation.
Growth hormone (GH) is a key metabolic regulator mediating glucose and lipid metabolism. Ataxia telangiectasia mutated (ATM) is a member of the phosphatidylinositol 3-kinase superfamily and regulates cell cycle progression. The orphan nuclear receptor small heterodimer partner (SHP: NR0B2) plays a pivotal role in regulating metabolic processes. Here, we studied the role of ATM on GH-dependent r...
متن کاملCALL FOR PAPERS Novel Aspects of Adipocyte Biology The nuclear retinoid-related orphan receptor- regulates adipose tissue glyceroneogenesis in addition to hepatic gluconeogenesis
Kadiri S, Monnier C, Ganbold M, Ledent T, Capeau J, Antoine B. The nuclear retinoid-related orphan receptorregulates adipose tissue glyceroneogenesis in addition to hepatic gluconeogenesis. Am J Physiol Endocrinol Metab 309: E105–E114, 2015. First published May 26, 2015; doi:10.1152/ajpendo.00518.2014.—Circadian rhythms have an essential role in feeding behavior and metabolism. ROR is a nuclear...
متن کاملNur77 suppresses hepatocellular carcinoma via switching glucose metabolism toward gluconeogenesis through attenuating phosphoenolpyruvate carboxykinase sumoylation
Gluconeogenesis, an essential metabolic process for hepatocytes, is downregulated in hepatocellular carcinoma (HCC). Here we show that the nuclear receptor Nur77 is a tumour suppressor for HCC that regulates gluconeogenesis. Low Nur77 expression in clinical HCC samples correlates with poor prognosis, and a Nur77 deficiency in mice promotes HCC development. Nur77 interacts with phosphoenolpyruva...
متن کاملDisruption of TR4 orphan nuclear receptor reduces the expression of liver apolipoprotein E/C-I/C-II gene cluster.
Apolipoprotein E (apoE) is synthesized in many tissues, and the liver is the primary site from which apoE redistributes cholesterol and other lipids to peripheral tissues. Here we demonstrate that the TR4 orphan nuclear receptor (TR4) can induce apoE expression in HepG2 cells. This TR4-mediated regulation of apoE gene expression was further confirmed in vivo using TR4 knockout mice. Both serum ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Diabetes
دوره 56 12 شماره
صفحات -
تاریخ انتشار 2007